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LElTER TO THE EDlTOR 

A note on the linearisation of supergravity 

P S Howet and R W Tucker 
Department of Physics, University of Lancaster, Lancaster LA1 4YB, UK 

Received 22 August 1978 

Abstract. The linearised theories of supergravity and superconformal gravity are obtained 
by directly linearising a second-order superspace. The method gives a clear distinction 
between the two theories and shows how the unification of the local spacetime symmetries 
occurs. 

The approach to the linearised versions of supergravity and superconformal gravity 
given by Ferrara and Zumino (1978) has several features in common with the standard 
superspace approach to supersymmetric Yang-Mills theories (for a review see e.g. 
Fayet and Ferrara 1977, Wess 1977)$. In particular the basic potential is a vector 
multiplet (although with an additional Lorentz vector index), and the generalised gauge 
transformations may be used to set the physically redundant component fields to zero 
while giving the linearised versions of superconformal transformations on the gauge 
fields. (In the pure supergravity case there are also some gauge invariant auxiliary fields 
which have trivial equations of motion (Stelle and West 1978, Ferrara and van 
Nieuwenhuizen 1978).) Unlike the Yang-Mills case, where there is only one true gauge 
invariance, in conformal supergravity there are a number of local x space symmetries, 
i.e. translations, Lorentz transformations, scale invariance, chiral invariance, and Q 
and S supersymmetries (Ferrara et a1 1978, Kaku et a1 1977). It is a particularly 
interesting aspect of the approach of Ferrara and Zumino (1978) that all these 
invariances are contained within one gauge parameter multiplet, although, as one might 
expect, the gauge transformation is slightly more complicated than for the Yang-Mills 
case. In this letter we show that the theory may be obtained directly by linearising a 
curved ‘second-order’ superspace, and that the unification of parameters occurs in a 
natural way. We are also able to make a clear distinction between the conformal case 
and ordinary supergravity. Our method is similar in spirit to that of Wess (1977) and 
Grimm et a1 (1978a) where the standard superspace formalism for Yang-Mills is 
obtained from a differential form starting point by imposing constraints on the super 
Yang-Mills field strength tensor. As we shall see, however, it is the translational gauge 
field strength which is constrained in supergravity, and its expression in terms of the 
basic gauge field (linearised supervierbein) is somewhat different from the ordinary 
gauge case. 

We begin with a Wess-Zumino curved superspace (Wess 1977, Wess and Zumino 
1977,1978, Grimm eta1 1978b) with an ‘orthonormal’ basisof l-forms 8^ which differ 

t Address from 1 October 1978: Institute for Theoretical Physics, Goteborg, Sweden. 
$ The vector superfield approach to supergravity has also been discussed by Ogietevsky and Sokatchev (1978) 
and, more recently, by Siege1 and James Gates Jr (1978). 

0305-4470/79/010021+04 $01.00 @ 1979 The Institute of Physics L21 



L22 Letter to the Editor 

only slightly from flat superspace: 
A 8" = dz M&A, SMA + H~ . 

Here EMA is the standard flat supervierbein and HMA the linearised field. Since it is 
always possible to choose the flat connection to be zero, we may write for the linearised 
connection 

@ B c A  = ~ B ~ f i M c "  = ~ ~ ~ ( h ~ c ~  (2) 
where hMBA is the connection of the full space. Next, we introduce the gauge field 
strengths: defining KBcA = ~ B C "  - TBC", H B ~  = EBMHMA, one has 

K~~~ = D B H ~ ~  - (- I ) ~ ~ D ~ H ~ ~  + T ~ ~ ~ H ~ ~  

- H B ~ T D C " + ( - I ) ~ ~ H C ~ T D B ~ + @ B C ~ - ( - I ) ~ ~ @ C B ~  (3) 

R A B P  = D A @ B C ~  - ( - I ) " ~ D B @ A C ~  + T A B ~ Q F C ~ .  (4) 

R A B C ~  - D ~ K ~ ~ ~  - T ~ ~ ~ K ~ ~ ~  - K ~ ~ ~ T ~ ~  + cyc. = o 
D A R ~ C ~ ~  + T A B ~ R G C D ~  + cyc. = o 

while the linearised curvature (the flat curvature is zero) is 

These fields satisfy the linearised Bianchi identities 

where '+cyc.' means with the cyclically permuted terms added. The field strengths (3) 
and (4) are invariant under the linearised versions of super-coordinate and local 
Lorentz transformations, i.e. 

HEA + HBA + DBeA + eCTcBA, @BCA + @BCA ( 5 )  

(6)  
A H ~ "  + H ~ "  + L ~ ~ ,  @BC + @ B C ~  - 

In comparison with the Yang-Mills case, clearly the curvature is formally very similar to 
the Yang-Mills field strength FAB. However, the constraints applicable there (i.e. 
FQB = Fd,j =Fa,+, = 0) are not in our case. For example one has 

RQ@,Yb = 4 ( E Q 4 @ 8  + EQbEBV)R+ (7) 
where R +  is one of the three basic superfields used to describe the geometry of a 
second-order superspace (Wess 1977, Wess and Zumino 1977, 1978, Grimm et a1 
1978b). Instead one has the standard constraints on the supertorsion, and an indepen- 
dent set in terms of the linearised field KBcA may be taken to be 

KBya = 0, KB+" = KpjQ = Keyu = 0, (U')+%@/ = 0,  Kb$=O. (8)  

The constraints (8) are also invariant under linearised super-Weyl transformations 
(Howe and Tucker 1978): 

SHb" = SE(Z + Z+), SHB" = 6;(2Z+-Z), S H ~ ~  = - $ ( ~ b ) d u f i d ~ +  
S@Q.@Y = - E Q P B Z - E Q @ Y Z ; )  S@a.bc = V a b D c  (X + Z') - 77acDb (x + E+) (9) 
where DbZ = 0. 

gauge' solution 
Our next step is solve (8) for HEA and aBcA. The first equation admits the 'pure 

H," = -iDBVa - 2 i ( ~ " ) ~ ~ $ a ,  HBU = DB$a (10) 
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which is unaltered by transformations of the form 

v,fj + V,b + S&, 6"' + & - ;DBskB 
provided that 

D&,g + DBSk = 0. 

Hence the transformations on V and 4 which reproduce ( 5 )  for HB", HB"' are 

v ,b  + v,,+ + + i&b, & + + &, - t u b  = (r")a,&a. (13) 

By means of a e, transformation we can therefore go to a gauge where 4, = 0 (unlike 
the Yang-Mills case we may assume hermiticity throughout), while we may use t a b  to 
obtain V,,j hermitian. We then have 

HB" = -iDBVa, V" = (V")', HBa = O  (14) 

V,b -P V,b +$(&e + s,,, 
and the amended transformation 

(15) 

which reproduces ( 5 )  for the special parameters 

t a b  = - s,b), 6, = iD@S,b:  

Clearly, in view of (12), we may take 

Sub = 2Db A, (17) 
so that (15) becomes identical to the basic gauge transformation of Ferrara and Zumino 
(1978). To make further progress, we may use local Lorentz invariance (6) to obtain 

HOP = Sa. (18) 
Then the remaining constraint equations may be used to solve the rest of the 
components of H B ~  and &cA in terms of V" and A .  One finds 

Hb" = 8 ( A  + A +) + i(C?b)', [D,, Db] v" 
( ~ b ) , ~ b a = i ~ ~ , A + ~ D D D ~ V , u  

Since @,/ = 0, the last of these equations may be solved for A :  

(20) A = -1 6DuD,j Vu' - &D&, Vu' 

up to a chiral superfield which is a reflection of the super-Weyl invariance. Under a 
gauge transformation (15) one finds 

A + A  + ;Da6" + 22+- Z (21) 
where 6, is given by (16) and 

z = &DDD, A, 

is clearly chiral. It is then straightforward to check that the basic gauge transformation 
reproduces the transformations (3, (6) and (9) if the fields are given by (19) and the 
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parameters by (16) and (22), as long as 

L~~ = ~ D ~ D D A ,  + ~ D $ D A ~ .  (23) 

This last equation is just the condition that we remain in the gauge (18). The various 
linearised tensors of supergauge may then be computed directly from (3) and are given 
by the same formulae of Ferrara and Zumino (1978) up to a normalisation factor. For 
example, 

R+=&DD a,Bv"@. (24) 

Hence we have shown that, at the linearised level, superspace is described by the 
hermitian multiplet Vab undergoing the gauge transformation (15). Furthermore, the 
linearised gauge parameters are clearly contained in Aa via equations (16), (22) and 
(23). It is also clear that supergravity transformations are obtained from supercon- 
formal transformations by requiring = 0, where Z is given by (22). The equations of 
motion of linearised supergravity may be obtained by directly linearising the full set 
(Wess and Zumino 1977, 1978, Grimm et a1 1978b), while in the conformal case, the 
action of Howe and Tucker (1978) may be linearised to give the action of Fayet and 
Ferrara (1977) and Wess (1977) via the Gauss-Bonnet theorem. 
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